

Bandwidth Efficient Baseband Multi-Modulator

Wai Fong, Andrew Gray and Pen-Shu Yeh

Earth Science Technology Conference June 24-26, 2003 College Park, MD

Program Objective

- Select a set of bandwidth efficient modulations from CCSDS *Radio Frequency (RF) and Modulation Systems* 401.0-B: Blue Book, Rec. 2.4.17A, 2.4.17B, and 2.4.18.
- Develop the high rate baseband multi-modulator (HRBM) on a flight applications specific integrated circuit (ASIC) for operational speeds >300 Mbps.
- Evaluate modulation designs with an FPGA implementation.
- Interface the HRBM with the RF modulator provided by the Solar Dynamics Observer (SDO) project.
- Test the entire modulator on the TDRSS Ka-band 650 MHZ service.

Background

- Space Frequency Coordination Group (SFCG) approved an RF mask recommendation 17-2 in 1998, last revision 21-2 in 2002.
- SFCG rec. 17-2/21-2 becomes NASA policy for missions to meet.
- CCSDS Rec. 2.4.17A, 2.4.17B, and 2.4.18, approved 2001, contains specifications for Offset Quadrature Shift Keying (OQPSK)-type modulations: Gaussian Minimum Shift Keying (GMSK), Filtered-OQPSK, Shaped-OQPSK (S-OQPSK), Feher QPSK-Type B (FQPSK-B) and also higher-order coded modulations, i.e. 8-PSK TCM at 2.0, 2.25, 2.5, and 2.75 bits/symbol/Hz.
- These modulations all conform to the SFCG mask.

Overview of Requirements

- Develop HRBM chip and board for realizing bandwidth efficient modulations
 - A path to flight realization
 - Re-usable implementation: HDL implementation will be used for ASIC design
 - Final implementation in radiation tolerant ASIC
 - Reduce risk of the ASIC realization of the three modulations
 - Verify modulation performance for the three modulations in laboratory and field environments
 - Spectrum, RF Interface, others
 - Implement a suite of CCSDS recommended modulations
 - Requirements include meeting spectral performance determined theoretically and with computer simulation within practical limits
 - Hard requirement for the spectrum of the modulator in all modes is to meet CCSDS spectral mask

Modulation Selection

- Three CCSDS modulations were selected for HRBM implemention.
 - GMSK due to it's excellent sideband suppression, receiver availability and BER performance with a Viterbi receiver.
 - Filtered-OQPSK due to it's filter flexibility and ability to accommodate independent channels.
 - 8-PSK TCM due to it's higher order modulation can produce more bandwidth efficiency.
- Two modulations were not selected.
 - FQPSK-B was not selected because it's spectra performance was not better than GMSK and it has a quasi-constant envelope signal.
 - S-OQPSK was not selected because of time constraint and complexity (although it has marginally the best spectra performance.)

SFCG MASK

GMSK Spectra

Filtered OQPSK Spectra

8-PSK TCM Spectra

Spacecraft Downlink Communication Block Diagram

Modulator Block Diagram

Modulator Detailed Block Diagram

Baseband Modulator Block Diagram

GMSK Architecture

 GMSK baseband modulators generate GMSK coding/pulse shaping primarily via wavelet look-up tables

8-PSK TCM Architectures

8-PSK I/Q Constellation with 0° Rotation

Filtered-OQPSK Architecture

- Size of the design is dominated by FIR filter.
- Number of taps drive the complexity and size of FIR filter.
- Simulations performed to trade-off number of taps vs. out-of-band spectral response.
- Perform end-to-end simulations to confirm performance.
- 64 taps is the best trade-off number giving good BER performance, meeting the SFCG mask and reducing the complexity as much as possible.

FIR Filter Architecture

- •Finite Impulse Response Pulse-Shaping Structure
 - •64 Coefficients
 - Programmable coefficients
 - Parallel Implementation
 - •Processing rate is approximately 1/4th symbol rate or 1/12th the bit rate (no coding)
 - •Frequency Domain Implementation for Reduced Complexity
 - •Novel parallel frequency domain structure results in approximately 1/4th the number of multipliers of other parallel processing structures

FIR Filter Complexity

- Frequency domain implementation employing sub-convolution for reduced complexity
 - 64 coefficient square root raised cosine pulse-shaping filter
 - Symmetric finite impulse response (FIR): a time domain approach requires 32 multiplies with the use of additional (32) tap delay lines
 - Require a minimum of 1/4th clock rate reduction; parallelization of at lest 4
 - Require two SRRC filters; one for I channel and one for Q channel

- •FPGA prototype would not be feasible without this reduced complexity architecture developed under this task (a multiple FPGA solution would be required)
- •This innovation resulted in a patent application, NASA Tech Brief and is being published in the IEEE ISCAS 2003

End-to-End Simulation Results

- Filtered-OQPSK with 64 tap SRRC (alpha=0.5) filtering with AWGN and no distortions:
 - 1 dB implementation loss (w.r.t. ideal QPSK) and Integrate and dump (I/D) receiver.
 - 0 dB imp. loss with a matched filter (MF) receiver
- Filtered-OQPSK with 64 tap SRRC (alpha=0.5) filtering through ESA SSPA with AWGN and TDRSS Ka-band service at 300Mbps:
 - 1.4 dB loss with MF receiver
 - 1.5 dB loss with I/D receiver
- Filtered-OQPSK with 64 tap SRRC (alpha=0.5) filtering through ESA SSPA with AWGN and TDRSS Ku-band service at 300Mbps:
 - 2.0 dB loss with MF receiver
 - 3.0 dB loss with I/D receiver

FPGA Board Block Diagram

Status

- There are two development tracks: 1. flight ASIC modulator along with the ASIC demodulator/decoder and 2. the FPGA modulator.
- Currently, 8-PSK TCM have been verified and translated into a Xilinx FPGA.
- The FPGA FIR filter design has been simulated to 100 MHz operation. This corresponds to an input date rate of 300 Mbps with Filtered 8-PSK.
- The FPGA prototype board design is complete will be submitted for fabrication this week.
- By September 2003, this board should be completely checked out.
- The ASIC design has started and is currently undergoing an architectural study.
- After this is competed, a detail design should start sometime in September 2003.
- Then a fabrication run would be initiated by the fourth quarter 2003 with the chips delivered in the first quarter 2004.